
EECS150: Finite State Machines in Verilog

UC Berkeley College of Engineering
Department of Electrical Engineering and Computer Science

1 Introduction

This document describes how to write a finite state machine (FSM) in Verilog. Specifically, in EECS150,
you will be designing Moore machines for your project. This document only discusses how to describe
Moore machines.

Moore machines are very useful because their output signals are synchronized with the clock. No
matter when input signals reach the Moore Machine, its output signals will not change until the rising
edge of the next clock cycle. This is very important to avoid setup timing violations. For example, if
a Mealy machines input signal(s) changes sometime in the middle of a clock cycle, one or more of its
outputs and next state signals may change some time later. “Some time later” might come after the
setup time threshold for the next rising edge. If this happens, the registers that will hold the FSMs next
state may receive garbage, or just incorrect inputs. Obviously, this amounts to a bug(s) in your FSM. A
very painful and difficult-to-find bug at that.

The tradeoff in using the Moore machine is that sometimes the Moore machine will require more
states to specify its function than the Mealy machine. This is because in a Moore machine, output
signals are only dependent on the current state. In a Mealy machine, outputs are dependent on both
the current state and the inputs. The Mealy machine allows you to specify different output behavior for
a single state. In EECS150, however, the FSMs that you will be designing do not typically have enough
states for this to create a significant problem. We will err on the side of caution, and vie for a safe but
sometimes more verbose FSM implementation, in this course.

2 Motivation

EECS150 is concerned with circuit design. You will be using Verilog to describe your circuits. Unfor-
tunately, Verilog, being originally designed to support circuit simulation rather than circuit synthesis, is
chalked full of syntactical idiosyncrasies that, if not properly understood, will create odd bugs in your
designs. This document will show you how to write a Moore FSM in a template-based fashion. This
“cookie-cutter” approach is designed to avoid Verilog’s bug-prone areas, while keeping your code as non-
verbose as possible. Verilog is a means to an end. This document will show you how to get to the point:
designing circuits; while fighting Verilog as little as possible.

3 A Basic FSM

Figure 1 depicts an example Moore FSM. You can tell that this is a Moore machine because the outputs
are shown inside [. . .]s instead of on state transition arcs. The following sections will refer to Figure 1 as
an example use-case for the Moore machine FSM template.

The FSM shown in Figure 1 is useful because it exemplifies the following:

1. The concept of an initial state.1

2. States with non-conditional outward transitions.

3. States with conditional outward transitions.
1There must always be an initial state for the FSM to start at after a Reset.

1

Figure 1 A basic FSM

!(A & B)

!((!A & B) | (A & !B))

A & !B

!A & B

A

!A
A & B

Reset

STATE_1

[Output1]

STATE_2

[Output1,

Output2,

Status = 3'b010]

STATE_3

[Status = 3'b011]
STATE_Initial

STATE_4

& logical and
| logical or
! logical not

4. States that loop back onto themselves.

5. States with no outward transitions.

We would like to be able to express this type of behavior in a Verilog-written FSM.

4 The FSM in Verilog

In looking at Figure 1, we will need a way to express the following in Verilog:

1. A state encoding for each state.

2. A mechanism for keeping track of the current state.

3. Transitions from state to state.

4. Output values based on the current state.

We will construct the FSM one step at a time.

4.1 1: Creating a State Encoding

We will create our state encoding with Verilog parameters. Parameters are symbolic constants with
either global (given by the Verilog keyword parameter) or module (localparam) scope. Because we only

2

Program 1 The state encoding (in decimal)

1 localparam STATE_Initial = 3’d0 ,

2 STATE_1 = 3’d1 ,

3 STATE_2 = 3’d2 ,

4 STATE_3 = 3’d3 ,

5 STATE_4 = 3’d4;

want our state encoding to be visible to the module in which we will write the FSM, we will use the
latter: localparam. With this in mind, we can specify Program 1.

In Program 1, the 3’d notation indicates that the number specified is in the decimal radix. If we were
to use 3’b, the encoding would look like that shown in Program 2. Both implementations are equivelent.
Base 10, or 3’d, is typically easier to read.

Because this FSM has 5 total states, we must allocate 3 bits to specify the encoding (hence 3’d

as opposed to 2’d or 4’d. This is extremely important. If you specify too few bits for your state
encoding, Verilog will not warn you. In fact, when synthesized, each state will only get as many bits as
you provide. For example, if STATE_4 was specified like this: STATE_4 = 2’d4, STATE_4 would be specified
as 00, the bottem 2 bits of what was intended, namely 100.

Program 2 The state encoding (in binary)

1 localparam STATE_Initial = 3’b000 ,

2 STATE_1 = 3’b001 ,

3 STATE_2 = 3’b010 ,

4 STATE_3 = 3’b011 ,

5 STATE_4 = 3’b100;

As 3 bits can specify a total of 8 states (0-7), our encoding specifies 3 potential states not specified
as being actual states. There are several ways of dealing with this problem:

1. Ignore it, and always press Reset as a way of initializing the FSM.

2. Specify these states, and make non-conditional transitions from them to the STATE_Initial.

To reduce ambiguity, we will choose the second option, which makes our final state encoding that
shown in Program 3.

Program 3 The state encoding with place-holder states (in decimal)

1 localparam STATE_Initial = 3’d0 ,

2 STATE_1 = 3’d1 ,

3 STATE_2 = 3’d2 ,

4 STATE_3 = 3’d3 ,

5 STATE_4 = 3’d4 ,

6 STATE_5_PlaceHolder = 3’d5 ,

7 STATE_6_PlaceHolder = 3’d6 ,

8 STATE_7_PlaceHolder = 3’d7;

This is a simple encoding: STATE_Initial is assigned 0, STATE_1 is assigned 1, etc. This is not
optimal if state minimization can be performed on the FSM (taught at the end of EECS150). We do
not recommend applying state minimization techniques by hand, however. They have the tendancy to
introduce bugs and create cryptic FSMs that cannot be easily understood by human readers. This defeats
one of the large pros of Verilog: human readability. Furthermore, the Synthesis tools that ‘compile’ an
FSM, written in Verilog, perform state minimization automatically. Only perform state minimization
manually to the extent that the function of the FSM remains clear.

3

4.2 2: Keeping Track of the Current State

We have several options in how to store the current state of our FSM. The first option is to instantiate a
module that acts as a register and use its output value as our current state. Alternatively, we can create
a reg element of the appropriate width and use its value as our current state. We will use the second
method for the remainder of this tutorial, out of personal preference. As such, we will store the current
state as depicted in Program 4.

Program 4 Storing the current state in a reg

1 reg [2:0] CurrentState;

If this material seems unfamilar, read Section 4.2.1, which explains the difference betweeen wire

and reg elements in Verilog. If this material is familiar, feel free to skip to Section 4.3.

4.2.1 wire and reg Elements in Verilog

Sections 4.2.2 to 4.2.4 discuss the difference between wire and reg in Verilog, and when to use each of
them.

4.2.2 wire Elements (Combinational logic)

wire elements are simple wires (or busses of arbitrary width) in Verilog designs. The following are syntax
rules when using wires:

1. wire elements are used to connect input and output ports of a module instantiation together with
some other element in your design.

2. wire elements are used as inputs and outputs within an actual module declaration.

3. wire elements must be driven by something, and cannot store a value without being driven.

4. wire elements cannot be used as the left-hand side of an = or <= sign in an always@ block.

5. wire elements are the only legal type on the left-hand side of an assign statement.

6. wire elements are a stateless way of connecting two peices in a Verilog-based design.

7. wire elements can only be used to model combinational logic.

Program 5 shows various legal uses of the wire element.

Program 5 Legal uses of the wire element

1 wire A, B, C, D, E; // simple 1-bit wide wires

2 wire [8:0] Wide; // a 9-bit wide wire

3 reg I;

4

5 assign A = B & C; // using a wire with an assign statement

6

7 always @(B or C) begin

8 I = B | C; // using wires on the right -hand side of an always@

9 // assignment

10 end

11

12 mymodule mymodule_instance (.In (D),

13 .Out(E)); // using a wire as the output of a module

4

4.2.3 reg Elements (Combinational and Sequential logic)

reg are similar to wires, but can be used to store information (‘state’) like registers. The following are
syntax rules when using reg elements.

1. reg elements can be connected to the input port of a module instantiation.

2. reg elements cannot be connected to the output port of a module instantiation.

3. reg elements can be used as outputs within an actual module declaration.

4. reg elements cannot be used as inputs within an actual module declaration.

5. reg is the only legal type on the left-hand side of an always@ block = or <= sign.

6. reg is the only legal type on the left-hand side of an initial block = sign (used in Test Benches).

7. reg cannot be used on the left-hand side of an assign statement.

8. reg can be used to create registers when used in conjunction with always@(posedge Clock) blocks.

9. reg can, therefore, be used to create both combinational and sequential logic.

Program 6 shows various legal uses of the reg element.

Program 6 Legal uses of the reg element

1 wire A, B;

2 reg I, J, K; // simple 1-bit wide reg elements

3 reg [8:0] Wide; // a 9-bit wide reg element

4

5 always @(A or B) begin

6 I = A | B; // using a reg as the left -hand side of an always@

7 // assignment

8 end

9

10 initial begin // using a reg in an initial block

11 J = 1’b1;

12 #1

13 J = 1’b0;

14 end

15

16 always @(posedge Clock) begin

17 K <= I; // using a reg to create a positive -edge -triggered register

18 end

4.2.4 When wire and reg Elements are Interchangable

wire and reg elements can be used interchangably in certain situations:

1. Both can appear on the right-hand side of assign statements and always@ block = or <= signs.

2. Both can be connected to the input ports of module instantiations.

4.3 3: Transitioning from State to State

After we have established our state encoding and a means of storing the current state value (which will
henceforth be referred to as CurrentState), our next task is to create a way for the FSM to actually
change state, and for it to choose how to change state. This material requires that you be comfortable
with always@ blocks. If the always@ block is unfamilar, read Section 4.3.1, which explains always@

block in Verilog. If the always@ block is familiar, feel free to skip to Section 4.3.8.

5

4.3.1 always@ Blocks in Verilog

Sections 4.3.2 to 4.3.7 discuss always@ blocks in Verilog, and when to use the two major flavors of always@
block, namely the always@(*) and always@(posedge Clock) block.

4.3.2 always@ Blocks

always@ blocks are used to describe events that should happen under certain conditions. always@ blocks
are always followed by a set of parentheses, a begin, some code, and an end. Program 7 shows a skeleton
always@ block.

Program 7 The skeleton of an always@ block

1 always @(... sensitivity list ...) begin

2 ... elements ...

3 end

In Program 7, the sensitivity list is discussed in greater detail in Section 4.3.6. The contents
of the always@ block, namely elements describe elements that should be set when the sensitivity list
is “satisfied.” For now, just know that when the sensitivity list is “satisfied,” the elements inside the
always@ block are set/updated. They are not otherwise.

Elements in an always@ block are set/updated in sequentially and in parallel, depending on the type
of assignment used. There are two types of assignments: <= (non-blocking) and = (blocking).

4.3.3 <= (non-blocking) Assignments

Non-blocking assignments happen in parallel. In other words, if an always@ block contains multiple <=

assignments, which are literally written in Verilog sequentially, you should think of all of the assignments
being set at exactly the same time. For example, consider Program 8.

Program 8 <= assignments inside of an always@ block

4 always @(... sensitivity list ...) begin

5 B <= A;

6 C <= B;

7 D <= C;

8 end

Program 8 specifies a circuit that reads “when the sensitivity list is satisfied, B gets A’s value, C gets
B’s old value, and D gets C’s old value.” The key here is that C gets B’s old value, etc (read: think OLD
value!. This ensures that C is not set to A, as A is B’s new value, as of the always@ block’s execution.
Non-blocking assignments are used when specifying sequential2 logic (see Section 4.3.5).

4.3.4 = (blocking) Assignments

Blocking assignments happen sequentially. In other words, if an always@ block contains multiple =

assignments, you should think of the assignments being set one after another. For example, consider
Program 9.

Program 9 specifies a circuit that reads “when the sensitivity list is satisfied, B gets A, C gets B, and
D gets C.” But, by the time C gets B, B has been set to A. Likewise, by the time D gets C, C has been set
to B, which, as we stated above, has been set to A. This always@ block turns B, C, and D into A. Blocking
assignments are used when specifying combinational logic (see Section 4.3.6).

2This point might be confusing. We said that non-blocking statements happen in parallel. Yet, they are useful for
specifying sequential logic? In digital design, sequential logic doesn’t refer to things happening in parallel or a sequence,
as we have been discussing, but rather to logic that has state.

6

Program 9 = assignments inside of an always@ block

1 always @(... sensitivity list ...) begin

2 B = A;

3 C = B;

4 D = C;

5 end

4.3.5 always@(posedge Clock) Blocks

always@(posedge Clock) (“always at the positive edge of the clock”) or always@(negedge Clock) (“al-
ways at the negative edge of the clock”) blocks are used to describe Sequential Logic, or Registers.
Only <= (non-blocking) assignments should be used in an always@(posedge Clock) block. Never use =

(blocking) assignments in always@(posedge Clock) blocks. Only use always@(posedge Clock) blocks when
you want to infer an element(s) that changes its value at the positive or negative edge of the clock.

For example, consider Figure 2, a recreation of Program 8 that uses posedge Clock as its sensitivity
list. Figure 2 is also known as a shift register. The completed always@ block is shown in Program 10.

Figure 2 A shift register

A

Clock

B C D

Program 10 A shift register, using <= assignments inside of an always@(posedge Clock) block

1 always @(posedge Clock) begin

2 B <= A;

3 C <= B;

4 D <= C;

5 end

4.3.6 always@(*) Blocks

always@(*) blocks are used to describe Combinational Logic, or Logic Gates. Only = (blocking)
assignments should be used in an always@(*) block. Never use <= (non-blocking) assignments in
always@(*) blocks. Only use always@(*) block when you want to infer an element(s) that changes
its value as soon as one or more of its inputs change.

Always use ‘*’ (star) for your sensitivity list in always@(*) blocks. The sensitivity list specifies
which signals should trigger the elements inside the always@ block to be updated. For example, given 3
wires A, B and C, we can create an and gate through Program 11, and shown graphically in Figure 3.

Program 11 specifies that “when A or B change values, update the value of every element inside the
always@(*) block. In this case, the only element inside the always@(*) block is C, which in this case
is assigned the and of A and B. A very common bug is to introduce an incomplete sensitivity list. See
Program 12 for two examples of incomplete sensitivity lists.

7

Program 11 An and gate inside of an always@(*) block

1 always @(A or B) begin

2 C = A & B;

3 end

Figure 3 The and gate produced by Program 11 (this is a normal and gate!)

A

B

C

In Program 12, the first example produces an and gate that only updates its output C when A changes.
If B changes, but A does not change, C does not change because the always@(A) block isn’t executed.
Likewise, the second example produces an and gate that doesn’t react to a change in A. Incomplete
sensitivity lists are almost NEVER what you want! They introduce very hard-to-find bugs.
As such, we use always@(*). The ‘*’ is shorthand for always@(A or B) in our examples. In other
words, ‘*’ sets the sensitivity list to any values that can have an impact on a value(s) determined by the
always@(*) block. ‘*’ provides a bug-free shorthand for creating complete sensitivity lists.

4.3.7 Pitfalls

You might be wondering what happens if you don’t follow the conventions set forth in Sections 4.3.5 and
4.3.6. The following are some easy-to-make mistakes in Verilog that can have a dramatic [and undesired]
effect on a circuit.

1. Consider the shift register from Figure 2. If you place = assignments inside of an always@(posedge

Clock) block to produce the shift register, you instead get the parallel registers shown in Figure 4
and Program 13. You might also get one register, whose output is tied to B, C and D. Both
possible outcomes are equivelent. These circuit make sense, but don’t create shift registers! (As
shift registers are common construct, we assume that you wanted to create a shift register)

Program 12 An and gate with an incomplete sensitivity list (this is incorrect!)

1 always @(A) begin

2 C = A & B;

3 end

1 always @(B) begin

2 C = A & B;

3 end

Figure 4 Parallel registers

A

Clock

B C D

8

Program 13 Parallel registers, using = assignments inside of an always@(posedge Clock) block

1 always @(posedge Clock) begin

2 B = A;

3 C = B;

4 D = C;

5 end

2. The opposite example (shown in Program 14), where we place <= assignments inside of always@(
*) is less pronounced. In this case, just consider what type of circuit you want to create: do you
want all statements to be executed in parallel or in ‘sequence’ (see Section 4.3.3 and 4.3.4)? In the
always@(*), the distinction between <= and = is sometimes very subtle, as the point of always@

(*) is to trigger at indefinite times (unlike the very definite posedge Clock). We recommend =

in conjunction with always@(*) to establish good convention (as = was originally meant to be
associated with combinational logic).

Program 14 <= assignments inside of always@(*) blocks

1 always @(*) begin

2 B <= A;

3 C <= B;

4 D <= C;

5 end

3. Consider the case of incompletely specified sensitivity lists. An incompletely specified sensitivity
list, as discussed in Section 4.3.6, will create an always@ block that doesn’t always set/update its
elements when it should. In truth, synthesis tools will often know what you mean if you provide
an incomplete sensitivity list, and pretend that your sensitivity list was complete. This is not the
case with simulation tools (like ModelSim), however. ModelSim will not correct your sensitivity
list bugs, and your simulations will be plagued with odd errors. Furthermore, the synthesis tools
catching your errors is not guarenteed. An easy way to avoid these potential problems is to use
always@(*) as opposed to always@(Input1 or Input 2 or ...).

4. Lastly, a very subtle point which perhaps has the potential to cause the most frustration is latch
generation. If you don’t assign every element that can be assigned inside an always@(*) block
every time that always@(*) block is executed, a latch (similar to a register but much harder to
work with in FPGAs) will be inferred for that element. This is never what you want and is a
terrible place for bugs. As this is subtle, it is somewhat hard to visualize. Consider Program 15.

Program 15 An always@(*) block that will generate a latch for C

1 wire Trigger , Pass;

2 reg A, C;

3

4 always @(*) begin

5 A = 1’b0;

6 if (Trigger) begin

7 A = Pass;

8 C = Pass;

9 end

10 end

In Program 15, A and C are both assigned in at least one place inside the always@ block.

A is always assigned at least once. This is because the first line of the always@ block specifies a

9

default value for A. This is a perfectly valid assignment. It ensures that A is always assigned with
each execution of the always@ block.

C on the other hand is not always assigned. When Trigger = 1’b1, the if statement ‘executes’
and both A and C get set. If Trigger = 1’b0, however, the if is skipped. A is safe, as it was given a
default value on the first line of the always@ block. C on the other hand, doesn’t get assigned at all
when this happens. As such, a latch is inferred for C. The erroneous circuit depicted in Program 15
is shown in Figure 5.

Figure 5 The circuit generated by Program 15 (this is an erroneous circuit!)

Pass

Trigger

C

A

1'b0
0

1

Latch
C

To fix this problem, we must make sure that C gets set every time the always@ block is ‘executed.’
A simple way to force this is to add another default value, depicted in Program 16 and shown in
Figure 6.

Program 16 An always@(*) block that will not generate latches

1 wire Trigger , Pass;

2 reg A, C;

3

4 always @(*) begin

5 A = 1’b0;

6 C = 1’b1;

7 if (Trigger) begin

8 A = Pass;

9 C = Pass;

10 end

11 end

Default values are an easy way to avoid latch generation, however, will sometimes break the logic
in a design. As such, other ways of ensuring that each value always gets set are going to be worth
looking into. Typically, they involve proper use of the Verilog else statement, and other flow
constructs.

Know that setting a reg to itself is not an acceptable way to ensure that the reg always
gets set. For example, C = C; enjected into the top of the always@(*) block in Program 15
will not supress latch generation. In every ‘execution’ of an always@(*) block, each value that is
assigned in at least one place must be assigned to a non-trivial value during every ‘execution’
of the always@(*) block.

10

Figure 6 The circuit generated by Program 16 (this is correct!)

Pass

Trigger

C

A

1'b0
0

1

1

0
1'b1

4.3.8 Post−always@: Specifying our FSM’s Transition Behavior

At this point, the tutorial assumes that you are familiar with the material starting at
Section 4.3.1.

Specifying an FSM’s transition behavior is done in 3 steps. First, we must choose how to store the
information that will tell the FSM what the next state should be on the next rising edge. Second, we
must create a physical means of transitioning from the CurrentState to the next state. Third, we must
implement the conditional-transitioning mechanism that will choose what the next state should be and
under what conditions a transition should be made.

We will store the next state information in a reg of the same width as the CurrentState reg. This
is because we will assign the next state in an always@(*) block. The details of this process will be
specified shortly. Our CurrentState and next state (which will henceforth be called NextState) are shown
in Program 17.

Program 17 Storing the current state and next state in reg elements

1 reg [2:0] CurrentState;

2 reg [2:0] NextState;

Once we have established CurrentState and NextState, we can create a means of transitioning at
the positive-edge of the clock through an always@(posedge Clock) block, as shown in Program 18. The
always@(posedge Clock) block in Program 18 is identical, and must be present, in all FSMs. It returns
the FSM to the initial state after a reset, and forces CurrentState to take on the value stored in NextState

at the positive-edge of the clock.

Program 18 The always@(posedge Clock) block

1 always@(posedge Clock) begin

2 if (Reset) CurrentState <= STATE_Initial;

3 else CurrentState <= NextState;

4 end

Once we have established a means of transitioning at the positive-edge of the clock, we are ready
to specify the FSM’s conditional-transitioning behavior, or how it chooses what NextState should be.
We will use an always(*) block in conjunction with a case statement to accomplish this. Unlike the
always@(posedge Clock) block above, which is the same for every FSM, the always@(*) block is very

11

dependant on which FSM it is written for. This is because while every FSM will transition from state to
state on the positive-edge of the clock, different FSMs will have different states and different arcs from
state to state. Again, for this tutorial, we will specify an example always@(*) block using the FSM
shown in Figure 1.

Program 19 The always@(*) block

1 always@(*) begin

2 NextState = CurrentState;

3 case (CurrentState)

4 STATE_Initial: begin

5 NextState = STATE_1;

6 end

7 STATE_1: begin

8 if (A & B) NextState = STATE_2;

9 end

10 STATE_2: begin

11 if (A) NextState = STATE_3;

12 end

13 STATE_3: begin

14 if (!A & B) NextState = STATE_Initial;

15 else if (A & !B) NextState = STATE_4;

16 end

17 STATE_4: begin

18 end

19 // ---------------------------------------

20 // Place -holder transitions

21 // ---------------------------------------

22 STATE_5_PlaceHolder: begin

23 NextState = STATE_Initial;

24 end

25 STATE_6_PlaceHolder: begin

26 NextState = STATE_Initial;

27 end

28 STATE_7_PlaceHolder: begin

29 NextState = STATE_Initial;

30 end

31 // ---------------------------------------

32 endcase

33 end

We will now discuss Program 19 line by line.
On line 2, we establish a default value for the NextState reg. The default value reads: “if NextState

does not get assigned anywhere in the case statement (below), set NextState to the CurrentState (which
means that no state change will occur). This avoids a potential Verilog-introduced bug that we will
explain shortly. It also greatly reduces the amount of code that the always@(*) block will take to
specify (another perk that will be explained shortly).

Line 3 specifies the beginning of a Verilog case statement. For all FSMs, this case statement is of
the form: case(CurrentState). This means that the branch of the case statement that is chosen based
on the CurrentState. This makes sense because state transition behavior for Moore machines is based
solely on the CurrentState.

Line 4 specifies the case when the CurrentState is STATE_Initial. This statement is self-explanatory:
“when we are in the initial state, always transition to STATE_1 at the next rising edge of the clock.” This
matches Figure 1, as it should.

Line 7 specifies the case when CurrentState is STATE_1. This case is more interesting because of the
implied transition loop back onto STATE_1. So, if A & B is true, transition to STATE_2. However, if A & B

is not true, stay in STATE_1. This last statement isn’t written in Program 19 anywhere, however, is
an implied else statement because of the default we established in Line 2! This is where the Line

12

2 default value saves space: whenever a state loops back on itself, we need not specify an else

statement. In fact, we need not write anything at all.
Lines 10-12, describing STATE_2 takes advantage of the Line 2 default value in the same way.
Lines 13-16 also take advantage of the default, but are worth mentioning as they show how a state

(STATE_4 can make different transitions to different states through an else if statement.
Lines 22-30 specify the actions to take if the FSM ever enters one of the unused states described

in Section 3. Specifically, the FSM should return to the initial state so that it can restart its normal
operation. If a state machine has unused states, because its state encoding does not take up every value
in its binary specification, for a given number of bits, and it accidentally enters an unused state, it might
get stuck in an infinite loop of garbage transitions.

As a closing note on state transitions, there is another very good reason to establish the
default value as was done on Line 2. The latch problem discussed in the tutorial on always@ blocks
(starting at Section 4.3.1) is very common in FSMs because FSMs liberally assign values in potentially
large and complex always@ blocks. Using default values can greatly decrease the chance of generating
latches in FSMs. If not for all of the other convenience-related reasons, you should use them for this
reason.

4.4 4: Outputting Values Based on the CurrentState

The final step in specifying a Moore FSM is assigning output values based on CurrentState. Fortunately,
this is simple with assign statements. See Program 20 for the FSM’s (from Figure 1) output specification.

Program 20 The outputs from Figure 1

1 wire Output1 , Output2;

2 reg [2:0] Status;

3

4 assign Output1 = (CurrentState == STATE_1) | (CurrentState == STATE_2);

5 assign Output2 = (CurrentState == STATE_2);

6

7 always@(*) begin

8 Status = 3’b000;

9 case (CurrentState)

10 STATE_2: begin

11 Status = 3’b010;

12 end

13 STATE_3: begin

14 Status = 3’b011;

15 end

16 endcase

17 end

Alternatively, the output assignment for Status can be combined into the always@(*) block that
chooses what the next state should be (see Program 19). It is seperated here for clarity.

4.5 A Complete FSM

In this tutorial we hasve discussed why the Moore machine FSM is useful in digital design and how
to create it in the Verilog HDL. We approached the problem in four different steps, namely defining
an encoding (Section 4.1), establishing a way to store state (Section 4.2), creating a means of choosing
between (possibly) more than one ‘NextState’ (Section 4.3), and outputting both 1-bit and multi-bit
output signals (all synchronous with the clock, Section 4.4). The final product, namely the FSM shown
in Figure 3, is reproduced in its entirety in Program 21 (part 1) and Program 22 (part 2).3 Again, you
can alternatively combine the case statement used to assign the Status output into the always@(*)

used to choose between possible NextState values. Seperating the two is personal preference.

3The final FSM in Verilog is split into two parts due to its size.

13

Now that we have constructed the final FSM, notice that it is packaged into a Verilog module. Each
FSM in a design should have its own module for composition and organization purposes. An FSM module

will always have Clock and Reset input signals, almost always have other input signals that manipulate
the NextState, and always have Output signals based on the output. Besides these convention-imposed
constraints, an FSM module is a normal Verilog module.

Rev. Name Date Description
B Chris Fletcher 9/4/08 Added Section 4.5 on the complete FSM.

A Chris Fletcher 8/31/08 Wrote new tutorial.

14

http://cwfletcher.net/
http://cwfletcher.net/

Program 21 The complete FSM (part 1) from Figure 1

1 module BasicFsm(

2 // --

3 // Inputs

4 // --

5 input wire Clock ,

6 input wire Reset ,

7 input wire A,

8 input wire B,

9 // --

10

11 // --

12 // Outputs

13 // --

14 output wire Output1 ,

15 output wire Output2 ,

16 output reg [2:0] Status

17 // --

18);

19

20 // --

21 // State Encoding

22 // --

23 localparam STATE_Initial = 3’d0 ,

24 STATE_1 = 3’d1 ,

25 STATE_2 = 3’d2 ,

26 STATE_3 = 3’d3 ,

27 STATE_4 = 3’d4 ,

28 STATE_5_PlaceHolder = 3’d5 ,

29 STATE_6_PlaceHolder = 3’d6 ,

30 STATE_7_PlaceHolder = 3’d7;

31 // --

32

33 // --

34 // State reg Declarations

35 // --

36 reg [2:0] CurrentState;

37 reg [2:0] NextState;

38 // --

39

40 // --

41 // Outputs

42 // --

43 // 1-bit outputs

44 assign Output1 = (CurrentState == STATE_1) | (CurrentState == STATE_2);

45 assign Output2 = (CurrentState == STATE_2);

46

47 // multi -bit outputs

48 always@(*) begin

49 Status = 3’b000;

50 case (CurrentState)

51 STATE_2: begin

52 Status = 3’b010;

53 end

54 STATE_3: begin

55 Status = 3’b011;

56 end

57 endcase

58 end

59 // --

15

Program 22 The complete FSM (part 2) from Figure 1

1 // --

2 // Synchronous State -Transition always@(posedge Clock) block

3 // --

4 always@(posedge Clock) begin

5 if (Reset) CurrentState <= STATE_Initial;

6 else CurrentState <= NextState;

7 end

8 // --

9

10 // --

11 // Conditional State -Transition always@(*) block

12 // --

13 always@(*) begin

14 NextState = CurrentState;

15 case (CurrentState)

16 STATE_Initial: begin

17 NextState = STATE_1;

18 end

19 STATE_1: begin

20 if (A & B) NextState = STATE_2;

21 end

22 STATE_2: begin

23 if (A) NextState = STATE_3;

24 end

25 STATE_3: begin

26 if (!A & B) NextState = STATE_Initial;

27 else if (A & !B) NextState = STATE_4;

28 end

29 STATE_4: begin

30 end

31 STATE_5_PlaceHolder: begin

32 NextState = STATE_Initial;

33 end

34 STATE_6_PlaceHolder: begin

35 NextState = STATE_Initial;

36 end

37 STATE_7_PlaceHolder: begin

38 NextState = STATE_Initial;

39 end

40 endcase

41 end

42 // --

43

44 endmodule

45 // --

16

	Introduction
	Motivation
	A Basic FSM
	The FSM in Verilog
	1: Creating a State Encoding
	2: Keeping Track of the Current State
	!wire! and !reg! Elements in Verilog
	[language=Verilog]!wire! Elements (Combinational logic)
	[language=Verilog]!reg! Elements (Combinational and Sequential logic)
	When [language=Verilog]!wire! and [language=Verilog]!reg! Elements are Interchangable

	3: Transitioning from State to State
	!always@! Blocks in Verilog
	[language=Verilog]!always@! Blocks
	[language=Verilog]!<=! (non-blocking) Assignments
	[language=Verilog]!=! (blocking) Assignments
	[language=Verilog]!always@(posedge Clock)! Blocks
	[language=Verilog]!always@(*)! Blocks
	Pitfalls
	Post-!always@!: Specifying our FSM's Transition Behavior

	4: Outputting Values Based on the !CurrentState!
	A Complete FSM

